AIRWAY ULTRASOUND

Dr Mmapali Mokapela

Hocus Pocus.. Why on earth?

- \circ Focused
- \circ Peri $\mathbf{O} \text{perative}$
- \circ **R**isk evaluation
- **S**onograph
- Involving
- \circ **G**rastro,
- Haemodynamic
- Transthoracic/Airway u/s

What am I trying to achieve?

• Can I intubate

- Will my single lumen or double lumen tube pass? (tracheal, bronchial diameter and subglottic diameter)
- Where is the tube (tracheal position and depth)
- Where is the crico-thyroid membrane
- Is the recurrent laryngeal nerve damaged
- Can I extubate the patient/(predition of post extubation stridor)
- Why is the patient hypoxic? (pneumo/insterstitial fluid)
- Will this patient aspirate

Osman and Sum Journal of Intensive Care (2016) 452 DOI 10.1186/s40560-016-0174-z

Journal of Intensive Care

Open Access

CrossMark

Role of upper airway ultrasound in airway management

Adi Osman^{1*} and Kok Meng Sum²

REVIEW

Indications

- Upper airway: Identifying crithothyroid membrane, ETT Position
- Lower airway: detection of pneumothorax, checking ETT position and assessment for interstial fluid

ABC of Airway ultrasound

Use high frequency linear probe Or curvilear probe for deeper structrures Saggital plane scan(longitudinal along midline) Cross sectional scan

Air mucosal interphase

- Double Tract sign
- String of Pears
- TACA
- $\circ~$ Lung Slide
- Stratisphere or Barcode sign
- 0

String of pearls

Fig. 1 Cricoid cartilage, thyroid cartilage, and cricothyroid membrane in longitudinal plane. Cc cricoid cartilage, Tc thyroid cartilage

TACA: Identifying CTM

Double tract sign

U/S assisted airway evaluation(1)

U/S assisted airway evaluation (2)

level of suprasternal notch.

Authors & Year	N= (M/F) Age (mean ± SD)	Difficult/easy laryngoscopy	Parameter studied	Difficult laryngoscopy †	Easy laryngoscopy †	Comment
Ezri, et al. 2003	50(21/29) N/A	9/41	STT at level of: VC*** • Thyroid isthmus suprasternal notch*	28 ± 2.7 mm 25 ± 1.3 mm 33 ± 4.3 mm	17.5 ±1.8 mm 22.8 ± 5 mm 27.4 ± 6.6 mm	Patients of middle eastern descent with DL have significantly more STT at level of VC.
Komatsu, et al. 2007	64(12/52) N/A	20/44	STT at level of VC*	20.4 ± 3.0 mm	22.3 ± 3.8 mm	No clinically significant difference in STT at level of VC could be found between DL and EL groups in patients of Caucasian and African American descent.
Adhikari, et al. 2011	51(19/32) 53.1 ± 13.2	6/45	STT at level of: • Hyoid bone • Thyrohyoid membrane	1.69 [95% CI = 1.19-2.19] cm 3.47 [95% CI = 2.88- 4.07] cm	1.37 [95% CI = 1.27-1.46] cm 2.37 [95% CI = 2.29 - 2.44] cm	STT at level of thyrohyoid membrane was significantly more in patients with DL compared to EL
Wojtczak, et al. 2012	12(7/5) 49.3 ± 15.6	6/6	HMDR** HMD _n HMDe Tongue volume Floor of the mouth muscle volume	1.02 ± 0.01 51.3 ± 5.3 mm 52.6 ± 5.8 mm 137 ± 29 cm₃ 34.8 ± 11 cm₃	1.14 ± 0.02 57.5 ± 4.3 mm 65.5 ± 4.1 mm 168 ± 34 cm ₃ 37.7 ± 13 cm ₃	HMDR and HMDe was greater in patients with DL compared to those with EL.
Hui, et al. 2014	100(55/45) 52.1 ± 15.5	11/89	Hyoid bone not visualized in sublingual ultrasound***	8/11(72.7%)	3/89(3.37%)	Inability to visualize hyoid bone significantly predicted DL.
Wu, et al. 2014	203(83/120) NA	28/175	DSHB*** DSEM*** DSAC***	1.51±2.7cm 2.39±0.34cm 1.30±0.31cm	0.98±0.26cm 1.49±0.39cm 0.92±0.20cm	DSHB, DSEM and DSAC are independent predictors of DL.

Pulmonary Assessment

 Better sensitivity than clinical assessment and cxr combined

 \circ FLUS

- Pheunothorax
- Interstitial Fluid

Pulmonary assessment(2)

Pulmonary assessment (3)

Pro's and Cons

- Affordable
- Accessible
- Fairly easy to learn

- Needs Practice
- User dependant
- Still need more research and data

Take home message

• Toy or tool?

openairway.org/airway-devices/airway-ultrasound

References

• Available on request

openairway.org/airway-devices/airway-ultrasound

THANK YOU!

Don't sweat the small stuff!