DESATURATION ON OLV

THORACICS WORKSHOP
OVERVIEW

- Incidence
- Physiology
- Updates
- Management
TAKE HOME MESSAGE

“Attempt to rapidly diagnose the problem, whilst simultaneously providing general management, until specific management can be implemented”

- 100% O₂ (hand ventilate)
- Confirm SpO₂ / scan: BP/etCO₂/AWP/ECG/FiO₂
- Auscultate / Check equipment
- Check position of DLT / confirm with FOB
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

TAKE HOME MESSAGE

› Apply PEEP to ventilated lung
› Apply CPAP to non-ventilated lung
› Intermittent two lung ventilation
› Consider clamping PA to non-ventilated lung
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

INCIDENCE

DESATURATION ON OLV

1950 1980 1990 2010

0 12.5 25 37.5 50
APPRAOCH TO DESATURATION ON ONE LUNG VENTILATION

PHYSIOLOGY
PREDICTION

- Right-sided surgery
- Prior contralateral resection
- Supine position
- Normal FEV1
- Poor oxygenation on TLV
- High A-a gradient for CO₂
Hypoxaemia associated with one-lung anaesthesia: new discoveries in ventilation and perfusion

A. Ng1 and J. Swanevelder2

1Heart and Lung Centre, Royal Wolverhampton Hospitals NHS Trust and University of Birmingham, West Midlands WV10 0QP, UK
2Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester LE3 9QP, UK
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT

- 100% O_2 (hand ventilate)
 - exclude disconnection / oxygen failure
 - determine compliance
 - assess need for suctioning secretions
- Confirm SpO_2 / scan: BP/etCO$_2$/AWP/ECG/FiO$_2$
- Auscultate / Check equipment
- Check position of DLT / confirm with FOB
SHUNT: BOTH LUNGS VENTILATED

Operated lung

Ventilated (dependent) lung
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

SHUNT: OPERATED LUNG NOT VENTILATED

78%

91%

Ventilated (dependent) lung
SHUNT: REDUCED DUE TO GRAVITY / HPV / COMPRESSION
SHUNT: FURTHER DESATURATION WITH DEPENDENT LUNG V/Q
SHUNT: TREAT WITH RECRUITMENT/PEEP – SHUNT MAY INCREASE
MANAGEMENT - VENTILATED LUNG

- Increase FiO₂ to 0.6 - 1.0, check compliance
- Increase minute ventilation:
 - Vt 6-8 ml/kg (10ml/kg) or Paw
 - Increase RR to maintain low-normal etCO₂
- Check DLT position - obstruction (too far)
- Suction
- Improve perfusion (fluid / vasopressors)
- Apply/adjust PEEP
MANAGEMENT – VENTILATED LUNG

- Apply/adjust PEEP
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT - NON-VENTILATED LUNG

- Preoxygenation
 - fill FRC of non-ventilated lung
 - increase time to desaturation
 - increase rate of lung collapse
 - reduces shunt fraction as lung collapses
- Insufflate oxygen via a suction catheter
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT – NON-VENTILATED LUNG
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT – NON-VENTILATED LUNG

P. Slinger (ed.), Principles and Practice of Anesthesia for Thoracic Surgery
Approach to desaturation on one lung ventilation

Management - Non-ventilated Lung

- Apply CPAP

© Elsevier Science 2005
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT - NON-VENTILATED LUNG

- Apply CPAP - discuss with surgeon first
- via suction catheter or CPAP circuit
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

MANAGEMENT - NON-VENTILATED LUNG

- Jet ventilation:
 - “jet” ventilate with HME and oxygen source
 - HFJV

- Intermittent two lung ventilation

- Clamping of pulmonary artery to non-ventilated lung

- nitric oxide / almitrine
Hypoxaemia during one-lung anaesthesia

Alexander Ng MB ChB DA(UK) FRCA MD
Justiaan Swanepoel MB ChB FRCA FCA(SA) MMed

Table 1 Management of hypoxaemia during OLV

<table>
<thead>
<tr>
<th>Problem area</th>
<th>Example</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas delivery</td>
<td>Anaesthetic machine, e.g. problem with oxygen supply</td>
<td>Check pipeline pressure and gas analyser</td>
</tr>
<tr>
<td></td>
<td>Disconnection of breathing system</td>
<td>Reconnection of breathing system</td>
</tr>
<tr>
<td>High airway pressure</td>
<td>Malposition of double-lumen tube causing incomplete lung ventilation</td>
<td>Reposition double-lumen tube, with bronchoscope if required</td>
</tr>
<tr>
<td></td>
<td>Malposition of endobronchial blocker leading to airway obstruction</td>
<td>Deflate blocker, bronchoscope to reposition</td>
</tr>
<tr>
<td></td>
<td>Sputum and blood</td>
<td>Suction</td>
</tr>
<tr>
<td></td>
<td>Bronchospasm</td>
<td>Bronchodilators if needed</td>
</tr>
<tr>
<td></td>
<td>Air trapping with dynamic hyperinflation</td>
<td>Decompress by disconnection of breathing system from tracheal tube</td>
</tr>
<tr>
<td></td>
<td>Pneumothorax of the ventilated lung</td>
<td>Emergency decompression with surgical assistance</td>
</tr>
<tr>
<td></td>
<td>Coughing due to inadequate muscle relaxation</td>
<td>Re-paralyse</td>
</tr>
<tr>
<td>Physiological</td>
<td>Shunt in non-ventilated lung</td>
<td>Oxygen insufflation to non-ventilated lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPAP to non-ventilated lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermittent two-lung ventilation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encourage early clamping of pulmonary artery to non-ventilated lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(during planned lung resection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimize haemoglobin, cardiac output, and hence oxygen delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If total lung collapse is not required and if prevention of cross-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>contamination is not an issue, the application of high-frequency jet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ventilation to both lungs may be considered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEEP to ventilated lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consider increase in driving pressure to ventilated lung</td>
</tr>
</tbody>
</table>
APPROACH TO DESATURATION ON ONE LUNG VENTILATION

QUESTIONS?

www.onelung.org.uk

www.thoracic-anesthesia.com

www.openanesthesia.org/one_lung_ventilation

openairway.org