Cardiovascular risk assessment: Developing versus developed world

Bruce Biccard

Disclosures

Research funding received

- Medical Research Council (MRC) South Africa
- University of KwaZulu-Natal
- South African Society of Anaesthesiologists
- National Research Foundation
- University of Cape Town

• VISION (Vascular Events In Noncardiac Surgery) study

- Troponin kits- Roche Diagnostics
- Over 50 grants internationally
- MANAGE (Management of Myocardial Injury After NoncArdiac SurGEry)
 - Boehringer Ingelheim Trial funding, but importantly investigator independent trial
 - Meetings
 - Teleflex, Smiths Aluta, Fresenius, GlobalSurg, RCS

Principles

- In the developing world
 - Perioperative cardiovascular events are important
 - Cardiovascular risk stratification guidelines are needed
 - Treatment of perioperative cardiovascular events must be prioritized

Myocardial injury after noncardiac surgery (MINS)

Western Cape Government

Health

Clinical scenario

- Postop patient has mildly elevated troponins
- Clinical assessment is non-contributory
- Cardiologist 'clears' patient
- Patient is later discharged from hospital

Health

Myocardial injury after noncardiac surgery (MINS)

- Develop diagnostic criteria based upon
 - assumption of shared pathophysiology

and

• prognostic relevance (impact on 30-day mortality)

MINS diagnostic criteria

- Dependent variable 30-day mortality
- Independent variables
 - Pre-op and surgical variables
 - Post op variables i.e. stroke, PE, DVT, pneumonia, sepsis, infection
 - Proposed MINS variables

MINS diagnostic criteria

Proposed MINS variables

post-op peak TnT ≥0.04 with clinical features

post-op peak TnT ≥0.04 without clinical features

post-op peak TnT ≥0.03

post-op peak TnT ≥0.02

MINS prognosis: 30 day mortality

	Incidence (%)	Adjusted HR (95% CI)	PAR (95% CI)
MINS (TnT ≥0.03)	1200 (8.0)	3.9 (3.0-5.1)	34.0% (26.6-41.5)
Sepsis	812 (5.4)	7.2 (5.2-10)	30.5% (23.7-37.2)
Stroke	81 (0.5)	3.5 (2.1-6.0)	4.5% (1.3-7.8)
PE	95 (0.6)	6.1 (3.2-11.7)	3.5% (0.9-6.2)

PAR population attributable risk

Botto et al. Anesthesiology 2014;120(3):564-78.

MINS prognosis: 30 days

Outcome	No MINS n=13823	MINS patients n=1189	OR (95% CI)
Mortality	1.1%	9.8%	10.1 (7.8-12.9)
Cardiac arrest	0.06%	0.8%	14.6 (5.8-37)
CHF	1.0%	9.4%	10.3 (8.0-13.4)
Stroke	0.4%	1.9%	4.7 (2.9-7.6)
Composite	2.4%	18.8%	9.6 (8.0-11.5)

Botto et al. Anesthesiology 2014;120(3):564-78.

Postoperative troponins & prognosis

Peak troponin relea	ase Vas (cular mortality (HR, 95% CI)	Nonvascular mortalit (HR, 95% CI)	Y
0.02n	g/ml 1.7,	95% CI 0.7-3.7	2.6, 95% CI 1.5-4.4	
0.03-0.29n	g/ml 4.8,	95% CI 3.2-7.3	4.7, 95% CI 3.6-6.1	
0.3n	g/ml 10.1,	95% CI 5.3-18.9	7.7, 95% CI 4.4-13.3	
Cape Ton				

Western Cape Government Health

The VISION Study Investigators. JAMA 2012; 307: 2295-2304

MINS prognosis: 1 year

26% 1 year mortality

van Waes JA et al. Anesth Analg 2016; 123: 29-37

MINS is relevant in the developing world

- No subgroup effect in VISION
- Groote Schuur Hospital elective surgery MINS: 4.9%, 95% CI 2.8-8.5

- 1. The VISION Study Investigators. JAMA 2012; 307: 2295-2304
 - 2. Coetzee et al. S Afr Med J 2018; 108: 408-12

Diagnostic criteria for MINS: 5th gen hsTnT

	hsTnT Thresholds, ng/L					
	<5	5 to <14	14 to <20	20 to <65	65 to <1000	≥1000
Patients, No. (%)	5318 (24.4)	8750 (40.1)	2530 (11.6)	4049 (18.6)	1118 (5.1)	54 (0.2)
Deaths, No. (%)	6 (0.1)	40 (0.5)	29 (1.1)	123 (3.0)	102 (9.1)	16 (29.6)
Adjusted hazard ratio (95% CI)	1 [Reference]	3.73 (1.58-8.82)	9.11 (3.76-22.09)	23.63 (10.32-54.09)	70.34 (30.60-161.71)	227.01 (87.35-589.9
P Value		.003	<.001	<.001	<.001	<.001

Western Cape Government

Identifying patients at risk of MINS needs to be a priority

Western Cape Government

Health

ESC vs AHA algorithms

Sequential risk stratification Major adverse cardiac events **High risk** High 1 of 5 patients **Pre-op** Postop Intermediate risk >50% 1 of 5 patients **3 of 5 patients** Low Low risk

Rodseth et al. J Am Coll Cardiol 2011; 58: 522-9

Integrating biomarkers into clinical practice

Hlatky et al. Circulation 2009; 119: 2408-16

Health

Preoperative B-type NPs & incremental value

Cumulative odds ratio (95% CI)

Conclusions: Further studies aiming only to demonstrate an association between a preoperative natriuretic peptide threshold and the risk of postoperative adverse cardiac events are not justified. Future investigation should focus on the clinical implications of these data and the application of these findings with regard to further investigation, optimisation and appropriate adaptation of perioperative management.

Preoperative B-type NPs & clinical utility

- Clinical utility and net reclassification improvement (NRI)
- NRI= proportion of patients with and without events correctly reclassified

Preoperative B-type NPs & clinical utility

RCRI risk	RCRI stra	RCRI stratification		
category	MACE	Total (n)		
Low	5.9%	320		
Intermediate	9.5%	476		
High	20.4%	54		

NRI 84%, p<0.001

MACE major adverse cardiac events

Rodseth et al. J Am Coll Cardiol 2011; 58: 522-9

Preoperative B-type NPs & clinical utility

MACE major adverse cardiac events

Rodseth et al J Am Coll Cardiol 2011; 58: 522-9 Rodseth et al. J Am Coll Cardiol 2014; 63(2): 170-80

Devereaux et al. CMAJ 2005; 173: 627-34

Risk stratification with B-type natriuretic peptides

Below these thresholds MACE is approximately 5% in major noncardiac surgery

Rodseth et al. Anesthesiology 2013;119(2):270-83 Rodseth et al. J Am Coll Cardiol 2014;63(2):170-80

Reservations concerning functional capacity

Table 1. Overall Net Reclassification Improvement for Myocardial Infarction and Cardiac Arrest When Totally Independent Functional Status Is Used, Based on the Model by Gupta et al.⁶

Risk reclassification using functional capacity			Percentage r	eclassified as:	Net correctly	Net reclassification	
Lower risk	Baseline	Higher risk	Lower risk	Higher risk	reclassified (%)	improvement (%)	
Patients with myocardial infarction and cardiac arrest							
788 ^b	1371	583ª	57.5%	42.5%	-15%	- 4 . est	
Patients without myocardial infarction and cardiac arrest 71.6%							
195,924ª	210,039 ^b	14,115 ^b	93.3%	6.7%	86.6%		
^a Improved classi	fication.						

^bWorse classification.

METS: Relationship between function, BNP, CPET

Wijeysundera DN et al. BMJ Open 2016;6(3):e010359.

Adjusted odds ratio (95% CI)

METS results

sity of Cap

o . Universite

an Kaapsi

3	0-day death or myoc	ardial infarction
В	aseline model‡	
	Plus peak oxygen consumption	0·90 (0·71–1·16; p=0·45)§
	Plus AT	0·96 (0·66–1·41; p=0·84)§
	Plus DASI	0·91 (0·83–0·99; p=0·03)§
	Plus NT PRO-BNP	1·88 (0·89–3·96; p=0·09)¶
3	0-day death or myoc	ardial injury
З В	<mark>0-day death or myoc</mark> a aseline model	ardial injury
3 B	0-day death or myoc aseline model Plus peak oxygen consumption	ardial injury 1·03 (0·92–1·14; p=0·62)§
3 B	0-day death or myoc aseline model Plus peak oxygen consumption Plus AT	ardial injury 1·03 (0·92–1·14; p=0·62)§ 1·12 (0·96–1·31; p=0·16)§
3 B	O-day death or myoc aseline model Plus peak oxygen consumption Plus AT Plus DASI	ardial injury 1·03 (0·92–1·14; p=0·62)§ 1·12 (0·96–1·31; p=0·16)§ 0·96 (0·92–0·99; p=0·05)§
3 B	O-day death or myoc aseline model Plus peak oxygen consumption Plus AT Plus DASI Plus NT PRO-BNP	ardial injury 1.03 (0.92–1.14; p=0.62)§ 1.12 (0.96–1.31; p=0.16)§ 0.96 (0.92–0.99; p=0.05)§ 1.78 (1.21–2.62; p=0.003)¶

Wijeysundera et al. Lancet 2018; 391: 2631-40

• ACC/AHA Guidelines;

"These studies and... meta-analyses suggest that biomarkers may provide **incremental predictive value**..."

Fleisher LA et al. J Am Coll Cardiol 2014;64(22):e77-137. doi: 10.1016/j.jacc.2014.07.944.

Canadian Cardiovascular Society Guidelines;

"These studies and... meta-analyses suggest that biomarkers **do** provide **clinical utility**..."

Canadian Cardiovascular Society Guidelines;

"These studies and... meta-analyses suggest that biomarkers do provide clinical utility above subjective functional assessment

Health

Canadian Cardiovascular Society Guidelines

sity of Cape

What does this mean for the developing world?

Guidelines

- International disagreement
- We need our own guidelines
- Must be built on feasibility

Treating MINS needs to become a priority

Western Cape Government

Health

Obstacles to treating MINS: troponin screening

• ESC/ESA algorithm

Would you accept a 10% 30 day and 26% 1 year mortality where the predictors are asymptomatic in 85% of patients?

Kristensen et al. Eur Heart J 2014;35(35):2383-431.

Obstacles to treating MINS: medical intervention

Suspected actiology of MINS	Diagnosis of Pivil	Intervention
All patients (100%)	7.9%	38.3%
Predisposing cardiac conditions (41%)	100%	65%
Perioperative triggers (28%)	39%	41%
Not specified (43%)	0%	18%

- •

van Waes JA et al. Anesth Analg 2016; 123: 29-37

Treating MINS: simple interventions

Aspirin 0.54 (95% CI 0.29-0.99)

Statin 0.26 (95% CI 0.13-0.54)

Devereaux et al. Ann Intern Med 2011;154(8): 523-8

Treating MINS: potentially cost-effective

Government

Western Cape

Treating MINS: optimisation of medical therapy

Western Cape Government

Foucrier A et al. Anesth Analg 2014;119(5):1053-63.

Treating MINS: the way forward

- Difficult clinical environment
 - Silent
 - Financial concerns regarding troponin screening
 - There are reservations about the diagnosis of MINS and its implications
 - Therapy is difficult in the postoperative patient
- Positives
 - Simple therapies which are potentially cost-effective
- Requires urgent research

Treating MINS: Dabigatran

Figure 2: Kaplan-Meier estimates of the primary efficacy outcome HR=hazard ratio.

Devereaux PJ, et al Lancet 2018;391(10137): 2325-2334.

Bruce Biccard @BruceBiccard · Jun 9 1. MINS is certainly not only an intra-coronary disease. For my views see; The pathophysiology of peri-operative myocardial infarction - Biccard - 2010 -Anaesthesia - Wiley Online Library onlinelibrary.wiley.com/doi/abs/10.111... #flow #platelets #coagulation #demand #microvascular O_1 1] 2 \bigcirc Bruce Biccard @BruceBiccard · Jun 9 2. Dabigatran drove done both arterial and venous components of the MANAGE primary outcome (Table 2 (NB) and supplementary material). The pathophysiology in point 1 above, is likely systemic, hence anticoagulation may have broader benefits than 'just the heart', (Table 2) O_1 1] 1 \odot Bruce Biccard @BruceBiccard - Jun 9 3. Difficult area of research; i) patients probably more concerned about surgical pathology than MINS (which is predominantly asymptomatic) hence high noncompliance, ii) doctors scared of bleeding, hence difficulty in recruitment. But now MANAGE evidence suggests benefits>>risks 0 2 11 0 1 Bruce Biccard @BruceBiccard · Jun 9 4. Conclusion. Patients with MINS should get statin, aspirin, and anticoagulation should be considered as a potentially important part of the proposed management strategy. #MANAGE Dabigatran in patients with myocardial injury after ... Among patients who had MINS, dabigatran 110 mg twice daily lowered the risk of major vascular complications, with no significant increase in major bleeding. Patients... thelancet.com 11 $^{\circ}$ Rupert Pearse @rupert_pearse · Jun 9 ...how long for? M Q_2 Ϋ́ Bruce Biccard @BruceBiccard · Jun 10

I am not sure how long one should continue anticoagulation after #MINS, but if background cardiovascular protection from anticoagulation extends out to just over a year, I would think that maybe this should be the minimum. #MANAGE

Summary

- In the developing world
 - Perioperative cardiovascular events are important
 - Cardiovascular risk stratification guidelines are needed
 - Treatment of perioperative cardiovascular events must be prioritized

Health