

Guide to Neuromuscular Blocking Agents

EMILY STERLING, PHARMD

Associate Clinical Instructor University of Washington School of Pharmacy Seattle, Washington

P. SHANE WINSTEAD, PHARMD

ICU Clinical Pharmacy Specialist Pharmacy Services Assistant Professor College of Pharmacy UK Healthcare Lexington, Kentucky

BRENDA G. FAHY, MD

Director, Critical Care Anesthesiology Professor Department of Anesthesiology UK Healthcare Lexington, Kentucky

ince the introduction of tubocurarine as the first neuromuscular blocking (NMB) agent, numerous new drugs for the use of muscle relaxation have been developed. Initially marketed for muscle relaxation to ease endotracheal intubation and provide optimal operating conditions, the application of NMB agents has expanded to include critically ill patients in the intensive care unit and emergency department.

The authors have no conflict of interest relevant to this educational review.

Succinylcholine, which achieves intubating conditions quickly with a brief duration of action, can be contraindicated under certain circumstances. Nondepolarizing agents, such as atracurium and vecuronium developed in the 1980s, presently provide a more rapid onset of action with a shorter duration than previously available agents. The ideal target for future drug development is a newer generation of nondepolarizing NMB agents with properties similar to those of succinylcholine; however, current research is shifting toward administration of NMB agents in combination with newer, more potent reversal agents.

The most recent breakthrough is the development of sugammadex (Org 25969), the first selective relaxant binding agent (SRBA), which is presently in Phase III trials. Currently available anticholinesterase agents are not capable of reversing profound blockade, even in higher doses, without potential cardiac and autonomic side effects. Sugammadex is a modified γ -cyclodextrin that tightly encapsulates aminosteroid-based agents, in particular rocuronium and vecuronium, thereby rapidly decreasing NMB concentrations at the motor end plate. Preliminary clinical trials report reversal to trainof-four (TOF) ratios of 0.90 within 2 to 5 minutes after administration of doses ranging from 2 to 8 mg/kg.¹⁻³ Consequently, sugammadex may offer a fast-acting, safe alternative for NMB reversal.

The following tables provide information such as dosing recommendations, pharmacodynamic information, and drug-disease state interactions.⁴⁻¹⁶ This information can be useful not only to anesthesiologists and other perioperative personnel but also to those who require NMB agents for the care of critically ill patients outside the operating room.

					Long Surgical Procedures		
Class	Drug (Trade Name, Manufacturer)	Intubation Dose,† mg/kg	Onset,‡ min	Duration, [§] min	Repeat Bolus,⁺ mg/kg	Average Infusion Rate ^{t, "} (range)	
Ultra-short- acting	Succinylcholine (various)	0.6 (0.3-1.1)	1	4-6	0.04-0.07	2.5-4.3 mg/min (0.5-10)	
Intermediate- acting	Atracurium (various)	0.4-0.5	3-5	20-35	0.08-0.1	5-9 mcg/kg/min (2-15)	
	Cisatracurium (Nimbex, GlaxoWellcome)	0.15-0.2	1.5-2	55-61	0.03	1-2 mcg/kg/min (1-3)	
	Rocuronium (Zemuron, Organon)	0.6 (0.45-1.2)	1-3	22-67	0.1-0.2	10-12 mcg/kg/min (4-16)	
	Vecuronium (various)	0.08-0.1 (up to 0.28)	2.5-3	25-30	0.01-0.015	1 mcg/kg/min (0.8-1.2)	
Long-acting	Pancuronium (various)	0.06-0.1	2-4	60-100	0.01-0.06	-	

Table 1. Dosing Guidelines and Pharmacodynamic Parameters of NMB Agents*

* NMB agents should always be used in combination with sedative and/or anesthetic agents.

⁺ Dosing information pertains only to adults and may vary based on the use of co-induction agents.

[‡] The onset of time to maximum block or time to good/excellent intubation conditions is dose dependent.

§ Clinically effective duration of action.

Il Infusion doses reflect initiation after early evidence of spontaneous recovery from the initial bolus dose.

Based on prescribing information/manufacturer's data and reference 4.

Table 2. Infusion Dosing Recommendations and Routes of Elimination for NMB Agents*

Structural Classification	Relaxant	ICU Bolus Dose,⁺ mg/kg	ICU Continuous Infusion ^{t,‡} (usual range)	Route of Elimination ^s	Metabolites		
Depolarizing							
	Succinylcholine	-	-	Plasma cholinesterase	No clinically active metabolites		
Nondepolarizi	Nondepolarizing						
Amino- steroidal compounds	Pancuronium	0.06-0.1 1 mcg/kg/min Primarily renal (1-2) ^{II} some biliary		Primarily renal, some biliary	3-hydroxy metabolite has 1/3 to 1/2 the activity of parent; may accumu- late in renal/hepatic failure		
	Rocuronium	0.6-1	10-12 mcg/kg/min (4-16)	Primarily biliary, some renal	No clinically active metabolites		
	Vecuronium	0.08-0.1	1 mcg/kg/min (0.8-1.2)	Primarily biliary, some renal	3-desacetyl metabolite has 1/2 the activity of parent; may accumulate in renal/hepatic failure		
Benzyliso- quinolinium compounds	Atracurium	0.4-0.5	4-12 mcg/kg/min (4.5-29.5) ^{II,¶}	Ester hydrolysis and Hoffman elimination	Laudanosine metabolite has been associated with CNS excitation; may accumulate in renal/hepatic failure		
	Cisatracurium	0.1-0.2	2.5-3 mcg/kg/min (0.5-10.2)	Ester hydrolysis and Hoffman elimination	Laudanosine metabolite has been associated with CNS excitation; may accumulate in renal/hepatic failure		
* NMB agents should always be used in combination with sedative and/or analgesic agents. II Pancuronium is generally not recommended for continuous infusion may be given in intermittent boluses of 0.04-0.1 mg/kg.							
			gree of neuro-	 Prolonged infusion of atracurium has been associated with toler- ance, necessitating significant dose increases or conversion to other NMB agents. 			
peripheral nerve stimulation).				CNS, central nervous system; ICU, intensive care unit			

SDose adjustments may be required in patients with organ dysfunction.

Based on prescribing information/manufacturer's data and reference 5.

Table 3. Dosing Guidelines for Rapid Sequence Intubation*

Drug	Priming Dose, ^{†,‡} mg/kg	Intubating Dose, [‡] mg/kg	Intubating Conditions Achieved, s	Clinical Duration,§ min	
Depolarizing					
Succinylcholine	None	1	45-60	5-10	
	Nondepolarizing pretreatment	1.5	45-60	5-10	
Nondepolarizing					
Rocuronium	None	0.6-1.2	45-60	31-67	
Vecuronium	None	0.3-0.4	90-120	90-130	
	0.01	0.15-0.2	90-120	60-75	

* NMB agents should always be used in combination with sedative and/or anesthetic agents.

 \ddagger Dosing information pertains only to adults.

\$ Time from intubation dose administration to twitch recovery to 25% of control.

 ⁺ This dose should be administered when preoxygenation is begun with the intubating dose 2-4 min after the priming dose. Primary dose has potential adverse effects including respiratory depression and aspiration.
 25%
 25%

Based on prescribing information/manufacturer's data and references 6-12.

Table 4. Antagonism of Nondepolarizing NMB Agents

Reversal Agent (Trade Name, Manufacturer)	Usual Single Dose*	Maximum Recom- mended Dose*	Onset,⁺ min	Duration, [‡] min	Mechanism of Action
Edrophonium (various)	10 mg	40 mg	0.5-1	10	Acetylcholinesterase inhibitor
Edrophonium plus atropine (Ohmeda)	0.05-0.1 mL/kg (0.5-1 mg/kg edro- phonium, 0.007-0.014 mg/kg atropine)	1 mg/kg edrophonium	0.8-2	70	Acetylcholinesterase inhibitor with anticholinergic
Neostigmine (various) [§]	0.5-2 mg	5 mg	20 ¹¹	60	Reversible acetyl- cholinesterase inhibitor
Pyridostigmine (various) [§]	10 mg	20 mg	12-20	120-180	Reversible acetyl- cholinesterase inhibitor

* Dosing information pertains only to adults.

⁺ A return of train-of-four ratio to 0.9.

‡ Maintenance of a train-of-four ratio >0.9.

§ Atropine 0.6-1.2 mg I.V. bolus recommended just before NMB agent to minimize cholinergic effects.

Il Onset of neostigmine is dose dependent.

Based on prescribing information/manufacturer's data and reference 5.

Table 5. Significant Drug Interactions With NMB Agents

Drug/Class	Clinical Effect	Dep	Non- dep	Management
Antiarrhythmic agents (eg, quinidine, procainamide, lidocaine)	Enhanced NMB activity	+	+	Response should be monitored using lowest dose possible to achieve ade- quate blockade.
Antibiotics (eg, aminoglycosides, tetracyclines, polymyxins, clin- damycin, piperacillin)	Potential for prolonged respiratory depression, excessive blockade	+	+	Observation for residual effects following NMB agent administration.
Antiepileptics (eg, carbamazepine, fosphenytoin, phenytoin)	More rapid recovery time following NMB administration		+	Monitor patients for clinical response; may need higher/more frequent doses of NMB agent.
Aprotinin (Trasylol, Bayer)	Prolonged NMB activity	+		Response should be monitored using lowest dose possible to achieve ade- quate blockade.
Azathioprine	Enhanced NMB activity (Dep) Reversal of NMB activity (Nondep)	+	+	Monitor effects of NMB agent and adjust dose as needed.
Calcium-channel blockers (eg, nicardipine, verapamil)	Enhanced NMB activity	+	+	Response should be monitored using lowest dose possible to achieve ade- quate blockade.
				continued on page 5

continued on page 5

Drug/Class	Clinical Effect	Dep	Non- dep	Management
Corticosteroids	Muscle weakness		+	Minimize duration of coadministration if possible; if prolonged concomitant use is necessary, allow patient to have NMB-free periods to reduce total dose administered.
	Prolonged NMB activity (Dep) Decreased NMB activity (Nondep)	+	+	Response should be monitored to achieve adequate blockade.
Cyclophosphamide	Enhanced or prolonged succinylcholine-induced apnea has been reported.	+		Response should be monitored using lowest dose possible to achieve adequate blockade.
Digoxin	Risk of cardiac arrhythmias	+	+	Noted specifically with succinylcholine; cardiac monitoring should be performed if used concomitantly.
Inhalation anesthetics (eg, enflurane, isoflurane)	Enhanced NMB activity	+	+	Response should be monitored using lowest dose possible to achieve adequate blockade.
Lithium	Prolonged NMB activity	+	+	Response should be monitored using lowest dose possible to achieve adequate blockade.
Magnesium salts	Enhanced NMB activity	+	+	Response should be monitored using lowest dose possible to achieve adequate blockade.
Metoclopramide	Prolonged NMB activity	+	+	Noted specifically with mivacurium. Response should be monitored using lowest dose possible to achieve adequate blockade.
Oral contraceptives (when taken chronically)	Prolonged NMB activity	+	+	Noted specifically with succinylcholine because it is metabolized via plasma cholinesterase. Response should be monitored using lowest dose possible to achieve adequate blockade.
Oxytocin	Enhanced NMB activity	+	+	Response should be monitored using lowest dose possible to achieve adequate blockade.
Tacrine	Prolonged NMB activity	+		Response should be monitored using lowest dose possible to achieve adequate blockade.
Terbutaline	Enhanced NMB activity	+		Response should be monitored using lowest dose possible to achieve adequate blockade.
Tricyclic antidepressants	Risk of ventricular arrhythmias		+	Documented in patients receiving chronic TCAs who are anesthetized with halothane and administered pancuronium.

Table 5. Significant Drug Interactions With NMB Agents (continued)

Dep, depolarizing agent; **NMB**, neuromuscular blocking; **Nondep**, nondepolarizing agent; **TCAs**, tricyclic antidepressants; **+** indicates presence of interaction.

Based on references 5, 13-15.

Table 6. Significant Disease State Interactions

Potential Clinical Effect	Disease State/Medical Conditions			
Potentiation of neuromuscular blockade	Neuromuscular diseases: myasthenia gravis, Eaton-Lambert syndrome Electrolyte disturbances: hypermagnesemia, hyponatremia, hypokalemia, hypocalcemia Acidosis (conditions that prolong metabolism): atypical plasma cholinesterase, renal disease, hepatic disease			
Antagonism of neuromuscular blockade	Neuromuscular diseases: hemiparesis or paraparesis, demyelinating lesions, peripheral neuropathies Other: hypercalcemia, alkalosis, burn injury			
Increased risk for cardiac arrhythmias or cardiac arrest with succinylcholine	Acute phase of injury following: major burns, multiple trauma, spinal cord injury, extensive denervation of skeletal muscle, upper motor neuron injury Other: hyperkalemia, digitalis toxicity			

Based on references 5, 13-16.

References

- 1. Naquib M. Sugammadex: another milestone in clinical neuromuscular pharmacology. *Anesth Analg.* 2007;104:575-581.
- Sparr HJ, Vermeyen KM, Beaufort AM, et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. *Anesthesiology*. 2007;106:935-943.
- Shields M, Giovannelli M, Mirakhur RK, Moppett I, Adams J, Hermens Y. Org 25969 (sugammadex), a selective relaxant binding agent for antagonism of prolonged rocuronium-induced neuromuscular block. *Br J Anaesth.* 2006;96:36-43.
- 4. Omoigui S. *Anesthesia Drugs Handbook*. 3rd ed. Malden, Mass: Blackwell Science, Inc.; 1999.
- 5. Murray MJ, Cowen J, DeBlock H, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. *Crit Care Med.* 2002;30:142-156.
- Kopman AF, Klewicka MM, Kopman DJ, et al. Molar potency is predictive of the speed of onset of neuromuscular block for agents of intermediate, short, and ultrashort duration. *Anesthesiology*. 1999;90:425-431.
- 7. Mazurek AJ, Rae B, Hann S, et al. Rocuronium versus succinylcholine: are they equally effective during rapid-sequence induction of anesthesia? *Anesth Analg.* 1998;87:1259-1262.
- Megorian T, Flannery KB, Miller RD. Comparison of rocuronium, succinylcholine, and vecuronium for rapid-sequence induction of anesthesia in adult patients. *Anesthesiology*. 1993;79:913-918.

- 9. Mehta MP, Sokoll MD, Gergis SD. Accelerated onset of nondepolarizing neuromuscular blocking drugs: pancuronium, atracurium and vecuronium. A comparison with succinylcholine. *Eur J Anaesthesiol.* 1988;5:15-21.
- Rodricks MB, Deutshman CS. Managing the airway in the critically ill patient: emergent airway management. *Crit Care Clin.* 2000;16:389-409.
- Sparr HJ, Beaufort TM, Fuchs-Buder T. Newer neuromuscular blocking agents: how do they compare with established agents? *Drugs.* 2001;61:919-942.
- 12. Reynolds SF, Heffner J. Airway management of the critically ill patient: rapid-sequence intubation. *Chest*. 2005;127:1397-1412.
- Donnelly AJ, Baughman VL, Gonzales JP, Tomsik EA, eds. *Anesthesiology & Critical Care Drug Handbook*. 5th ed. Hudson, Ohio: Lexi-Comp; 2004.
- Ostergaard D, Engbaek J, Viby-Mogensen J. Adverse reactions and interactions of the neuromuscular blocking drugs. *Med Toxicol Adverse Drug Exp.* 1989;4:351-368.
- 15. Cammu G. Interactions of neuromuscular blocking drugs. Acta Anaesthesiol Belg. 2001;52:357-363.
- Feldman S, Karalliedde L. Drug interactions with neuromuscular blockers. Drug Saf. 1996;15:261-273.