Preoperative assessment for lung resection

RA Dyer

DEPARTMENT OF ANAESTHESIA & PERIOPERATIVE MEDICINE
UNIVERSITY OF CAPE TOWN

2016
“The ideal assessment of operative risk would identify every patient who could safely tolerate surgery. This ideal is probably unattainable......”

Mittman, 1961
Whose responsibility?

- The anaesthetist is the perioperative physician, and co-ordinator
- Preoperative assessment is “an interdisciplinary approach to the specific problems of a severely compromised or co-morbid patient”

Zollinger, 2001
Why do the assessment?
Morbidity and Mortality

- **Respiratory** - 15-20%
 - Atelectasis
 - Pneumonia
 - Respiratory failure
- **Cardiac** - 10-15%
 - Ischaemia
 - Arrhythmia
- **What is an acceptable operative mortality when the alternative is death?**
Clinical scenarios

- Inflammatory lung disease (PTB)
- Malignant disease (Ca Bronchus)
- Emphysema (Lung Volume Reduction)
PTB

• Nutritional status
• Airway distortion-DLT
• Secretions
• Haemoptysis
• Difficult surgery
• Haemorrhage
• Bronchospasm

Malignancy

• Associated medical conditions
 - IHD, HT, Arrhythmia
• Hypoxaemia-shunt
• 4 M’s
Lung volume reduction surgery

Pre-op CXR

Post-op CXR

("Permissive hypercapnia versus pulmonary tamponade")
Approach to preoperative assessment

- History
- Examination
- Operability
 - bronchoscopy, mediastinoscopy, CT/MRI
- Cardiac assessment
- Can the patient tolerate the surgical procedure?
 - Respiratory mechanics
 - Lung parenchymal function
 - Cardiopulmonary reserve
History and Examination

(1) General: Age, obesity, medication, smoking, COPD, ASA 3, renal impairment

(2) Respiratory assessment:

Bronchopulmonary symptoms
- Cough
- Haemoptysis
- Wheeze
- Chest pain
- Sputum
- Dyspnoea
History and Examination

(3) Cardiac assessment:
 – Chest pain
 – Clinical Cardiac evaluation:
 – NB RV function and PHT
 – ECG and Radiological features
 – Pulmonary hypertension
Operability - Malignancy

- Mass effects
- Metabolic abnormalities
- Metastases
- Medications

Slinger, 2001
Mass effects
The Value of the CT Scan

• Malignancy
• Pulmonary tuberculosis
Malignancy - Hilar Nodes
Bronchiectasis
Bronchiectasis
Approach to preoperative assessment

- History
- Examination
- Operability
 - bronchoscopy, mediastinoscopy, CT/MRI
- **Cardiac assessment**
- Can the patient tolerate the surgical procedure?
 - Respiratory mechanics
 - Lung parenchymal function
 - Cardiopulmonary reserve
Cardiac assessment

- **ThRCLI=2**
- or any cardiac condition requiring medications,
- or a newly suspected cardiac condition,
- or inability to climb 2 flights of stairs

Cardiac consultation, with noninvasive cardiac testing and treatments as per AHA/ACC guidelines

Need for coronary intervention (CABG or PCI)

- Continue with ongoing cardiac care
- Institute any needed new medical interventions (i.e., beta blockers, anticoagulants, statins)

Postpone surgery for ≥6 weeks and re-evaluate

Proceed to CPET and Pulmonary Function tests

Proceed to Pulmonary function tests

*ThRCLI (Thoracic revised Cardiac Risk Index). Ref 50
- Pneumonectomy: 1.5 points
- Previous ischemic heart disease: 1.5 points
- Previous stroke or TIA: 1.5 points
- Creatinine > 2mg/dl: 1 point

- Physical examination
- Baseline ECG
- History
- Calculate ThRCRI*
1. Coronary stenting can be performed before lung resection, but not been shown to influence cardiac risk.

2. Coronary artery bypass surgery before lung surgery, as suggested previously, might delay curative resection, which is problematic because of the time constraints in the management of lung cancer.

3. Combining lung cancer surgery and conventional bypass surgery increases the risk of morbidity and mortality.

4. Minimally invasive (off-pump) direct coronary artery bypass surgery simultaneous with lung resection has comparable complications with lung resection alone.
Approach to preoperative assessment

- History
- Examination
- Operability
 - bronchoscopy, mediastinoscopy, CT/MRI
- Cardiac assessment

- *Can the patient tolerate the surgical procedure?*
 - Respiratory mechanics
 - Lung parenchymal function
 - Cardiopulmonary reserve
• Identify the high risk patient on spirometry
• Starting FEV1 > 2 L: pneumonectomy
• Starting FEV1 < 1.5 L: >25% complications
• Predicted postoperative FEV1 < 800 mL (30%N): Increased m+M
• RV/TLC, >50%: Increased m+M
• Maximal voluntary ventilation < 50%
Lung parenchymal function

- \(\text{PaO}_2 < 8 \text{ kPa} \)
- \(\text{PaCO}_2 > 6 \text{ kPa} \)
- Predicted postoperative DLCO < 40% correlates with an inadequate total functioning surface area of the alveolar-capillary interface

Slinger, 2009
FEV₁ 800 mL
pH 7.28
PaO₂ 8.6 kPa
PaCO₂ 7 kPa
BE 0 mmol/L
Predicted postoperative FEV1 (ppoFEV1)

- Number of unobstructed segments to be resected
- Radionuclide perfusion scan
- Quantitative CT scanning
- Contrast enhanced perfusion MRI
55% perfusion

19 segments, 42 sub-segments

45% Perfusion

Slinger 2001
The role of the radionuclide scan

- Measurement of the ventilation and perfusion of each individual lung (as a fraction of the total), by radioisotopic scanning, using 133Xe and 99Tc: *evaluates lungs separately*

- Perfusion scan alone is usually performed
Indications

- Borderline predicted postoperative lung function
- Uncertain of perfusion in area to be resected (e.g. PTB)
- ? Perfusion in area to be resected if pulmonary hypertension present
The Value of the Perfusion Scan in PTB

FEV₁ = 1 L

FEV₁ = 2 L
Predicted Postoperative $\text{FEV}_1\%$

$= \text{Preoperative } \text{FEV}_1\% \times (1 - \% \text{ functional tissue removed} / 100)$

Aim for $> 40\%$
Calculation of ppoFEV1

- Subtract % perfusion or ventilation of area to be resected from FEV$_1$ measured spirometrically

- Resecting volume = \text{activity in area to be resected} \cdot \frac{\text{activity in total lung fields}}{\text{activity in total lung fields}}
Calculation

• \(ppoFEV_1 = \text{Preoperative } FEV_1 \times (1 - \text{resecting volume}), \)
 or \(\times \% \text{ perfusion of the contralateral side} \)

• If perfusion of lung to be removed is 40\% of total, and preoperative \(FEV_1 = 1.4 \text{ L} \):

 \[
 ppoFEV_1 \text{ is } 1.4 \times (1-0.4) = 1.4 \times 0.6 = 0.84 \text{ L}
 \]

• \(ppoDLCO \text{ and } ppoVO_{2\text{max}} \) may also be calculated
Approach to preoperative assessment

- History
- Examination
- Operability
 - bronchoscopy, mediastinoscopy, CT/MRI
- Cardiac assessment
- Can the patient tolerate the surgical procedure?
 - Respiratory mechanics
 - Lung parenchymal function
 - Cardiopulmonary reserve
Low technology exercise testing

• 6 minute walk: self-paced exercise test
 – > 2000 feet = VO$_{2\text{max}}$ of 15 mL/kg/min

• Shuttle walk test:
 – Incremental timed exercise test
 – 25 shuttles (250 metres) correlates with VO$_{2\text{max}}$ of 15 mL/kg/min

Singh, 1992; Benzo, 2009
Low technology exercise testing

• Stair climbing:
 – <1 flight of stairs: \(\text{VO}_{2\text{max}} \) of <10 mL/kg/min
 – 3 flights of stairs: \(\text{FEV}_1 \) > 1.7 L
 – 5 flights of stairs: \(\text{FEV}_1 > 2 \) L: \(\text{VO}_{2\text{max}} \) of 20 mL/kg/min
 – Patients climbing <12 metres (3 flights) had 13 - and 2-fold greater morbidity and mortality than 22 metres
 – Rate of ascent may be as important as height

Koegelenberg, 2008; Brunelli, 2009
Rate of ascent
High technology exercise testing

- $\text{VO}_{2\text{max}} > 20 \text{ mL/kg/minute (>75\% predicted)}$ required for pneumonectomy
- $\text{VO}_{2\text{max}} < 10 \text{ mL/kg/minute (<40\% predicted)}$ places patient at high risk
- Exercise desaturation $>4\%$ may represent high risk
3.9.2. In patients with lung cancer being considered for surgery and a $V_{O_2}\max < 10\text{mL/kg/min}$ or $< 35\%$ predicted it is recommended that they are counseled about minimally invasive surgery, sublobar resections or nonoperative treatment options for their lung cancer (Grade 1C).

Actual Risks affected by parameters defined here and:
- Patient Factors: Comorbidities, age
- Structural Aspects: center (volume, specialization)
- Process factors: Management of complications
- Surgical access: Thoracotomy vs. minimally invasive
Pulmonary hypertension

- Pulmonary artery catheterisation and assessment of pulmonary artery pressure and response to exercise
- Pulmonary vascular resistance > 190 dyne.sec.cm$^{-5}$
- Balloon occlusion of PA tests distensibility of remaining pulmonary vascular bed
 - Increase in mean pulmonary artery pressure to > 40 mmHg
 - Or PaO$_2$ decreases to < 6 kPa
- NB Echocardiography for RV dysfunction
“Expect the worst and hope for the best”

- Any lobectomy may become a pneumonectomy
- Dependent lung may become impaired
- Functional impairment of remaining lung on operative side for 2 weeks
- Compensatory hyperinflation may produce V/Q mismatch
- Early improvement after relief of compression
Lung volume reduction surgery
Pulmonary pathophysiology

- Loss of elastic recoil
- Diaphragm at mechanical disadvantage
- V/Q mismatch

Consequences
- Increased ventilatory requirement, work of breathing
- Hypoxaemia complicates V/Q mismatch
- Hypercapnia tolerated
- Pulmonary hypertension, cor pulmonale
Inclusion criteria for LVRS

- FEV1 20-40% predicted
- TLC > 100%, RV > 150% predicted
- PaCO$_2$ < 60 mmHg
- 6 minute walk > 140 m
- No coronary artery disease
- No previous thoracotomy
- Commitment to pre and postoperative pulmonary rehabilitation
Outcomes

- 1218 patients randomised
- Mortality similar in 2 groups at 29 months
- But $\frac{5.2\%}{1.5\%}$ for LVRS vs medical Rx in first 3 months
- 15\% vs 3\% had a > 10 Watt increase in exercise capacity at 2 years
- Predictors of benefit of LVRS:
 - Inhomogeneous emphysema, low preoperative exercise capacity
 - Risk ratio 0.47, $p = 0.005$
 - Homogeneous emphysema, high preoperative exercise capacity
 - Risk ratio 2.06, $p = 0.02$

N Engl J Med 2003
Conclusions

- No single test of respiratory function has adequate validity as a preoperative assessment tool
- Outcome is not based entirely on preoperative lung function
- Cannot extrapolate from one indication for surgery to another
Conclusions

• Influences on outcome are multifactorial:
 – Motivation
 – Lung and cardiac function
 – Secretions
 – Surgery
 – Anaesthesia and postoperative pain relief
Summary

• History and examination
• ECG, CXR, +/- CT/MRI
• FEV$_1$/FVC
• ABG
• Further lung function: DLCO +/- V/Q
• Exercise testing - bedside
• Exercise testing - laboratory
• Further cardiac function: PAC
Treat

- Reversible airways obstruction
- Chest infection
- Atelectasis
- Pulmonary oedema
- Plan for thoracic epidural analgesia
- DLT / risk of hypoxaemia
Physiologic Evaluation of the Patient With Lung Cancer Being Considered for Resectional Surgery

Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines

Alessandro Brunelli, MD, FCCP; Anthony W. Kim, MD, FCCP; Kenneth I. Berger, MD, FCCP; and Doreen J. Addrizzo-Harris, MD, FCCP

CHEST 2013; 143(5)(Suppl):e166S–e190S
Functional Evaluation before Lung Resection

Florian von Groote-Bidlingmaier, MD, Coenraad F.N. Koegelenberg, MD, Chris T. Bolliger, MD, PhD*

KEYWORDS
- Lung resection
- Operability
- Preoperative evaluation
- Regional lung function
- Cardiopulmonary exercise test

